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Galaxy spectra

• Fiber optic spectroscopy
• Sloan Digital Sky Survey

• Anglo-Australian Telescope

• LAMOST

• 1M+ galaxy spectra available

• Medium resolution: 0.5 – 2 Å

• Redshift

• Galaxy physical properties



Physical properties 
of galaxies
• Stellar populations

• Metallicity

• Gas and dust content

• Stellar mass

• Orbital velocities

• Dynamical mass

• Mass to light ratio

• Dark matter content

• Star formation rate and history

• Mean stellar age, galaxy age

• Star formation episodes

• Nuclear activity



Stellar Population 
Synthesis
• Theoretic approach to model spectra

• Single stellar populations: 𝑆SSP
• Stars from the same cloud, aging together

• Star formation history: Ψ 𝜏

• Composite stellar populations: 𝑆galaxy 𝑡

• Fitting models is a deconvolution of Ψ 𝜏

𝑆galaxy 𝑡 =  
0

𝑡

𝑆SSP 𝑡 − 𝜏 Ψ 𝜏 d𝜏

Conroy, Annu. Rev. Astron. Astrophys. 2013. 51:393-455 



Empirical approaches

• Continuum indices
• Absorption line properties well 

correlate with physical parameters

• PCA
• Expand spectra on eigenbasis
• Principal components correlate with 

physical parameters
• Works well with noisy data and gaps
• Not all parameters can be recovered

• MOPED
• Dimensionality reduction method 

similar to PCA

Wild et al. 2009 MNRAS Vol. 395, Issue 1, pp. 144-159.



Direct model fitting

• Stochastic burst libraries

• Generate many model spectra 
with a wide range of parameters

• Find best-fitting model in library

• Allows for parameter priors

• SPSFast

• Dezső Ribli et al.

• Super fast computation of 
composite spectra on the GPU

• Allows for direct fitting with MCMC

• Parameterizing star formation 
history is still a problem



Deep learning on the GPU

• Half a day of
• System setup

• Building from source

• Configuration

• 50 lines of python code to train

KERAS



Galaxy age

• Age predicted from overall shape

• Use dense network

• Young stellar populations
evolve faster

• Spectrum depends on log-age

• Expect better fit for age < 1 Gyr



Dense neural networks

• Hidden nodes: full interconnect

• Independent weights

• Learn global features













Metallicity

• Heavier elements in stellar
atmospheres

• Spectral degeneracy:
• Effect on continuum

similar to age

• Focus on absorption lines

• Use convolutional networks



Convolutional neural networks

• Weights of spatially close edges
are kept the same

• Local focus

• Repeating pattern: kernels

• Propagate many kernels up









Conclusions & future work

• Deep Neural Networks can tell physical parameters from spectra

• Excellent tool for reliable mass processing of spectra

• Need to teach on realistic models

• Account for real-line noise and drop outs

• Compare with traditional methods


